
2506 IEEE T R A N S A C T I O N S O N C O M M U N I C A T I O N S , VOL. C O M - 3 0 , N O . 12, D E C E M B E R 1982

Experience with Formal Specifications Using an Extended
State Transition Model

GREGOR V. BOCHMANN, EDUARD CERNY, MEMBER, IEEE, MICHEL GAGNE, CLAUDE JARD, ALAIN LEVEILLE,
STUDENT MEMBER, IEEE, CLEMENT LACAILLE, MICHEL MAKSUD, MEMBER, IEEE, K. S . RAGHUNATHAN, AND

BEHCET SARIKAYA, STUDENT MEMBER, IEEE

Abstract-Experience with the use of formal descriptions of com-
munication services and protocols is described. The paper focuses on
the experience of the authors with the extended state transition model
which is proposed as a standard formal description technique (FDT)
for the services and protocols in the OS1 environment. The first part
of the paper refers to various example specifications, including
transport protocol and service specifications, and discusses the suit-
ability of the specification method and possible extensions. In the
remaining part, the use of such formal specifications during the
phases of system design, implementation, and testing is described.
Various approaches to protocol design validation, implementation,
and assessment of implementations are discussed, with emphasis on
the last point. The experience with several of these approaches is
described in the paper, and further details may be found in the
references.

I. INTRODUCTION

F ORMAL methods are considered important tools for the
reliable design and implementation of communication

protocols. These methods are always based on some formal
specification of the communication protocol and/or services
given using an appropriate formal description technique (FDT).
Among the different FDT’s that have been proposed and used
(see, for example, [8] or [54]), we consider in this paper
mainly the extended state t rans i t ion model [26] deve loped by
Subgroup B of the IS0 TC97/SC16/WG1 ad hoc group on
FDT (or similar dialects). This is a descriptive model which
combines the state transition nature of finite state machines
with the power of a high-level programming language (Pascal).
Similar approaches to the specification of protocols have been
described in the literature [4], [9], [141 , [5 5] .

The different activities during the design and implementa-
tion of protocols where formal specifications can be useful are

Manuscript received March 3, 1982; revised July 27, 1982. This
work was supported in part by the Natural Science Engineering Research
Council of Canada and research contracts from the Department of Com-
munication of Canada. This paper was presented in part at the Second
International Workshop on Protocol Specification, Testing, and Verifi-
cation, May 1982.

G. V. Bochmann, E. Cerny, A. Leveille, C. Lacaille, M. Maksud, and
K. S. Raghunathan are with the Department d‘ Informatique et de
Recherche Operationnelle, Universite de Montreal, Montreal, P.Q.,
H3C 357, Canada.

M. Gagne is with the National Research Council of Canada, Ottawa,
Ont., Canada.

C. Jard is with the Department of Evaluation and Validation of
Protocols, Centre Nationale d’Etudes des Telecommunications, Lannion,
France.

B. Sarikaya is with the School of Computer Science, McCill Univer-
sity, Montreal, P.Q., Canada.

summarized in [111 . The main activities are

munication protocols or services,
1) the elaboration of a reference specification of the com-

2) the validation of the design of a protocol specification,
3) the design and development of a protocol implementa-

tion based on the protocol specification obtained under point
2), and

4) the validation of a protocol implementation obtained
under point 3).

In this paper we discuss our experience with the use of the
extended state transition FDT for the above mentioned activ-
ities. We also make some reference to similar work that is
proceeding at other places, although we do not pretend to
give a complete review of this area.

The paper is structured as follows: Section I1 relates our ex-
perience with the use of the IS0 extended state transition
model (or similar local dialects) for the writing of formal
protocol and service specifications. Some critical comments
based on this experience are given in Section 11-E. Sections
111, IV, and V deal with the activities 2), 3), and 4) mentioned
above. The main part of each of these sections gives a descrip-
tion of recent work done by our group in these areas. Due to
lack of space, the discussions are relatively short, and refer-
ences are provided for more detail.

11. EXAMPLE SPECIFICATIONS
A . The Transport Layer as a Test Case

The IS0 ad hoc group on FDT has chosen the transport
layer as the principal test case for comparing different FDT’s
proposed for the specification of OS1 protocols and services.
As a result, many different formal and semiformal specifica-
tions of the transport protocol and service have been de-
veloped (see, for example, the papers presented at the ad hoc
group’s meetings).

The transport layer service [181 is a connection-oriented
communication service that supports normal and expedited
data transfer. Different classes of protocols [19] are defined,
each providing a different set of functions. The available func-
tions are

1) connection establishment with the selection of an
appropriate protocol class and options,

2) addressing of transport service access points (TSAP),
3) multiplexing,
4) error detection and (possibly) recovery,

0090-6778/82/1200-2506$00.75 0 1982 IEEE

BOCHMANN etal.: SPECIFICATIONS USING STATE TRANSITION MODEL 2507

5) independent flow control for normal and expedited data

6) recovery from network connection failures, etc.
Since the above mentioned CCITT/ISO documents are

relatively recent, most work with FDT’s is based on previous
CCITT, ISO, or ECMA documents, and is often restricted to
the protocol classes 0 and 2.

B. Specifications of the Transport Protocol

Different versions of transport protocol specifications have
been produced by our group as contributions to the discussion
on FDT’s. We mention here only the following two versions
which are of different scope.

The class 0 protocol specification in [57] is written in a
local dialect [27], and was later rewritten according to the
IS0 syntax [58]. The purpose was to describe the basic rules
of the transport protocol in a most simple manner. Therefore,
the specification considers only a single transport connection
(multiplexing is not allowed for class 0), and only the “abstract
protocol” (see [33, sect. 4.31) is defined, ignoring the map-
ping of the protocol data units into the network service primi-
tives. The transitions may either be grouped by major states
[57] or by incoming interaction [58].

Reference [58] gives a complete protocol specification for
classes 0 and 2. It considers an arbitrary number of simultane-
ous transport connections over an arbitrary number of net-
work connections, including the possibility of multiplexing.
The mapping of PDU’s into network service primitives is also
defined, except for the detailed coding of the different PDU
parameters. The mapping function considers possible concate-
nation of several PDU’s to form a single network service data
unit, and the priorities of different connections and different
kmds of PDU’s. I t seems that the possible nondeterminism of
the FDT (see Section 11-El) below) is an essential feature for
leaving certain implementation choices undefined.

Many different formal transport protocol specifications
have been written using Pascal [39] , Ada [171 , extended Petri
nets [3], and other methods [28], [61]. Space limitations
prevent us from providing further references and comparisons.

C. Specifications of the Transport Service

over different connections, and

The transport service may be specified with the same FDT
giving a specification of the transport layer and the layers
below considered as a black box (see Fig. 1, dashed box). This
approach has been taken for the specification of [59] which
describes the properties of the transport service as seen by the
users through the service access points. As in [58], an arbitrary
number of simultaneous transport connections is considered.
A simplified version, considering only a single connection and
ignoring the problem of addressing, is given in [60] using a
local dialect [27] of the FDT.

Many other transport service specifications have been writ-
ten by different groups [3], [28], [61]. There is not enough
space to discuss them all. However, we would like to mention
here the question of whether it is useful to separate, in the
service specification, the local and global [9] sequencing rules
for the execution of service primitives. A general framework

1 User A I
[F, User B

*

_ _ _ _ _ _ _ _ _
T r a n s p o r t S e r v i c e

P r o v i d e r Y

; T r a n s p o r t
; E n t i t y A

T r a n s p o r t ;
E n t i t y B ; z 5 1 i

Network Se rv i ce P rov ide r
I

Fig. 1. Relationship between transport service and transport protocol.

for such a separation is given in [12]. While the state transi-
tion model seems adequate for the specification of the local
rules [29], its use for the global rules may be questionable.
While different specification languages (such as temporal
logic [lo] , o r abstract data types [41]) may be used for the
global rules, we are presently experimenting with separate
specifications for the local and global rules using the extended
state transition model for both.

D. Other Example Specifications

, -J

As mentioned in the Introduction, the general approach of
using an extended state transition model for protocol specifi-
cations is not new. Some of our previous work on HDLC [S I ,
X.25 [6] , and the message link protocol [7] lies in this line.
More recently, the NBS and DoD (USA) have funded the
development of FDT’s (similar to [26]) for use in their
protocol development projects [53], [S I . The formal pro-
tocol specifications developed in this context are interesting
examples.

Another example is some effort [22] for developing .a
formal specification of the Teletex control procedures. In this
effort the Teletex session and document layers were described
using the local FDT dialect [27]. In order to clarify the rela-
tion between the different layers (including the underlying
transport layer), an attempt was first made to give a formal
description of the services provided by the session and docu-
ment layers. The protocol specifications are then given in the
reference to these service specifications. It may be interesting
to note that the selection of the primitives for the document
service was made in a somehow arbitrary manner. Some of
these primitives are related to a document file store. Some
kind of “virtual file store” was defined in a semiformal manner
(see Section 11-ES) below).

Finally, we would like to review briefly the specification
[15] of a virtual file system developed by the Hahn-Meitner-
Institute, Berlin. This specification is given in two parts. The
first part is the specification of a virtual file server, i.e., it
defines the local input/output behavior of a file server in terms
of file service primitives exchanged with its local environment.
This part of the specification defines the meaning of such
primitives as OPEN, READ, WRITE, etc. The specification uses
a dialect of the extended state transition model; however,
several extensions to the syntax of [26] seemed necessary for
this example, as explained in the following section. The second
part of the specification defines the communication protocol

2508 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-30, NO. 12, DECEMBER 1982

used for the evocation of the file service primitives over
distance. The system is characterized by three protocol sub-
layers (above the transport service) which are specified
separately.

E. Suitability of the FDT and Possible Extensions
We conclude from the above mentioned experience of writ-

ing formal specifications that the FDT of [26] is a flexible
tool which leads to relatively readable specifications. One of
the main problems to be decided for each specification was the
overall order in which the different transitions of the specifi-
cation should be arranged in order to arrive at the most under-
standable presentation. Such decisions are sometimes quite
arbitrary, often related to the personal tastes and prejudices
of the person writing the specification. Consequently, some in-
formal guidelines would be useful for this purpose, Reference
[21] tries to give some objective arguments for a particular
organization of the transitions (ordering by incoming inter-
actions) and shows how such a discipline can be useful for the
systematic development of protocol specifications during the
design phase.

The following subsections contain comments on certain
features of the specification language and its use, and they
point out some possible extensions.

1) Nondetemzinism: The FDT of [26] is based on a model
of a nondeterministic state machine. It is sometimes argued that
nondeterministic behavior is not required, or desirable, for
protocol specifications. We have found nondeterminism an
important element of the specification language in the case of
service specifications, where the relation between the inter-
actions at the different service access points is not determinis-
tic, as well as in the case of protocol specifications, where (in
[58] for instance) the priority of certain possible operations
of the protocol entity is not always defined; for example,
priority of different multiplexed connections, extent of con-
catenation of multiple PDU’s into service data units, possible
overtaking of data by disconnects, etc.

2) Incomplete Specifications: A specification of a protocol
entity or a communication service usually makes some assump-
tions on the behavior of other modules in the system. Under
these assumptions not all possible interaction patterns will
occur. Therefore, it seems reasonable to give specifications
that are incomplete in the sense that they define the behavior
of the specified system module only for the case that the
above mentioned assumptions are satisfied. We assume the fol-
lowing convention concerning completeness of a module speci-
fication. If for some given input interaction (with some parti-
cular parameter values) and some given module state, no pos-
sible transition is defined, then the specification is incomplete
and the behavior of the module is not defined for this situation.

Such a situation should not occur under the assumptions
mentioned above. In the case that “in the real world” no tran-
sition is specified for an input that occurs, we can therefore
say that the above mentioned assumptions are not satisfied,
and that an “unforeseen error” has occurred in the environ-
ment of the specified module.

I t is certainly desirable to foresee some of the possible
errors of the environment, in particular misbehaviors of the

peer protocol entity. Transitions for these error cases should,
therefore, be included in. the formal specification and not be
left as “unforeseen errors.” How much of such error cases
should be included seems. to be a matter of taste. Some, but
not all, protocol specifications try to specify actions for every
possible misbehavior of the peer entity. In the OS1 environ-
ment, transitions treating user misbehavior should probably
not be defined, since they may be considered part of the serv-
ice interface which is a local implementation issue.

The above discussion of the meaning of incomplete specifi-
cations becomes’ more subtle in the context of nondetermin-
ism. We propose the following definition. An input interaction
from the environment to the specified module is an unforeseen
misbehavior if the specification of the module provides for the
possibility that the sequence of preceding interactions leads to
a state of the specification for which there is no transition
specified for the interaction under consideration [34]. We
note that sometimes a different convention is used where an
input interaction for which no transition is specified is ignored
and is not necessarily considered an “unforeseen error.”

3) Special Syntax for Major States: We are not convinced
that the special syntax for the major module state (FROM and
TO clauses) is warranted for the specification of protocols and
services, since the PROVIDED clause and assignment state-
ments could be used instead. The latter seems to be more
flexible for specifying multiple connection endpoints.

4) Use of Assertions: The use of assertions for the specifi-
cation of software is well known. We found that this method
could naturally be incorporated into the extended state
transition model by using assertional specifications in the
following three cases.

a) The meaning of procedures and functions used in transi-
tions can be specified by input-output assertions on the pa-
rameter values.

b) Sometimes, individual statements within a transition
may be considered largely implementation dependent; how-
ever, the specification may state some essential properties.
These properties may be defined by assertions on the module
state variables (possibly relating the value before and after the
execution of the statements).

c) There are situations where the action of a whole transi-
tion may be best defined by assertions which relate the state
values before and after the transition (instead of defining a
statement sequence which performs the state transformations).
Such an approach is similar to the definition of 0-functions in
Special [SO] .

Cases a) and b) have been used in [46], [59], [58], and
case c) would have been useful in the specification of the
virtual file server [15 J , for defining the meaning of the
POS primitive which positions a pointer in the hierarchical
structure of a file.

5) Abstract Data Types: Certain aspects of a specification
are usually left informal, since the specification language is not
well suited to describing these aspects (it would usually lead
to unnatural, lengthy descriptions). Such is often the case with
data buffers that are used in the descriptions of the transport
protocol [S7], [S8] or service [59], [60]. In the example of
the Teletex document protocol [22], the “virtual file store”

BOCHMANN et a l . : SPECIFICATIONS USING STATE TRANSITION MODEL 2509

mentioned above and a “document manager” were described
along similar lines. Usually semiformal descriptions are given,
declaring a number of ‘‘primitive’’ procedures and/or functions
that may be called and explaining their meaning in natural
language.

These are examples in which formal descriptions based on
the formalism of abstract data types (as developed for soft-
ware engineering) may be useful [41]. It seems that abstract
data type specifications could be combined with the extended
state transition model; however, further research seems to be
required in this area.

6) Liveness and Performance Issues: Most applications of
finite state or extended state transition models do not con-
sider performance issues, and liveness considerations are
usually limited to showing absence of deadlocks and loops
without progress [8], [54]. For defining the liveness proper-
ties of an extended state transition specification, certain
transitions may be defined to be “live,” where a live transition,
if it is enabled, will eventually be executed unless some other
transitions leads into a state where it is not enabled any more.
A typical example is a time-out transition. Liveness proper-
ties of finite state machines are also considered in [23].

Performance considerations may be integrated into the ex-
tended state transition model by associating probabilities with
the different transitions that are possible from a given state, and
by defining a transition time for each type of transition,
either a minimum and/or maximum value or a probabilistic
time distribution [161 , [44] .

111. PROTOCOL DESIGN VALIDATION

The objective of protocol design validation (see, for ex-
ample, [SI) is to verify that a given protocol specification for
layer N , together with the given service specification for
layer (N - l), implies that the (N)-layer service is provided by
the layered system architecture shown in Fig. 1.

A . Protocol Design Verification
Under this heading we consider static analysis of the speci-

fications. The different approaches to verification are reviewed
in [8], [54] where further references may be found. Tech-
niques that are relevant for the extended state transition
model are reachability analysis for finite state machines,
invariant analysis for Petri nets [11 , [3] , and program proving
techniques. When a “major state abstraction”of the system is
considered (which ignores the interaction parameters and
additional state variables of the model) the techniques de-
veloped for finite state machines and Petri nets are applicable,
and often provide useful insight into the possible interaction
sequences. For a complete verification, however, the interac-
tion parameters and additional state variables must be con-
sidered and usually require some verification methods related
to program proving (for example, assertions and invariants,
symbolic execution, etc.; a simple example is discussed in [4]).

We are presently working on the verification of a class 0
transport protocol based on the specifications given in [46],
[57], [58] and the standard mapping of PDU’s into network
service primitives. Globally, the verification proceeds through
the following three steps.

1) The three modules shown in Fig. 1 (protocol entities and
network service provider) are combined into a single machine.
In the “major state abstraction,” this combination corresponds
to the formation of a product finite state machine or a Petri
net, where it is important to consider the direct coupling of
the input-output interactions between the combined modules
(see, for example, [43] or [24], [48]). Special attention must
be given to the interaction parameters and additional state
variables.

2) From the viewpoint of the user service, the input-
output interactions between the combined modules may be
ignored. This view may be obtained by projections [43],
or Petri net reductions [2], [24], [48]. In order to reduce the
complexity of the problem it may also be useful to consider
only one particular service property at a time, as explained
in [37].

3) Finally, the abstracted machine specification obtained
under point 2) must be compared with the given transport
service specification. For the verification of the safeness
properties, it is necessary to show that all execution sequences
obtained from the machine specification of point 2) are al-
lowed according to the service specification. In addition, it is
necessary to show that all liveness properties of the service
specification are provided by that machine (which includes
the absence of deadlocks and similar general properties). It
is likely that the specification obtained in point 2) is not very
different from the given specification of the transport service.
Any difference found may point to an inconsistency in the
specifications. The detailed application of these ideas to the
verification of the transport protocol may be found in [36] .

B. Testing of Protocol Designs

Under this heading we consider testing of protocols by
directly executing their specification. This is a kind of simula-
tion approach, where the three modules shown in Fig. 1 are
executed in some simulated environment, and the behavior of
the simulated system is observed and compared with the given
service specification. Such approaches can be used for analyz-
ing the logical behavior of the system (in which we are interested
at this point), as well as the performance CharaGteristics [25],

For the realization of the simulation, the automatic imple-
mentation approaches discussed in the next section may be .
used. Another problem is the automatic comparkon of the be-
havior resulting from the simulated system gith the given
service specification. In the case that the behavior of the serv-
ice is nondeterministic (which is usually the case), the dif-
ferent choices possible according to the service specification
must all be explored, in order to check whether one of them
corresponds to the behavior observed. The creation of such a
checking module from the formal specification of the service
is explored in [34].

The simulation requires the generation of ,user input in-
teractions which must be chosen in such a way as to maximize
the probability of detecting any possible malfunctions. The
problem is similar to the selection of test sequences for pro-
tocol implementation testing, as discussed in Section V.

~381.

I

25 10 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-30, NO. 12, DECEMBER 1982

IV. AUTOMATING PROTOCOL IMPLEMENTATION

Since the extended state transition model combines ele-
ments from finite state machines and programming languages,
it is relatively easy to obtain an implementation for a given
specification in the form of a program. Implementations of
finite state machines in software are straightforward, and the
other elements are already in a programming language form.
The typical approach is to implement a specification as a
looping program where each cycle of the loop executes a tran-
sition. The transition is either initiated by some input interac-
tion or by some internal condition that makes its execution
possible. The loop could consist of a CASE statement with one
case per kind of input interaction (including “no input”). For
each of these, cases, the internal conditions may be tested again
by a CASE statement testing the major state of the module, or
by successive .IF statements to select the appropriate transi-
tion to be executed.

The implementation of the interactions with the other
modules in the system (input and output interactions) is very
much. system dependent. In an implementation of the trans-
port protocol on our PDP-11 computer [40], the transport
service interactions are realized by the exchange of messages
passed via a shared memory region between the users and the
transport module, which are separate tasks under the RSX-
11M operating system, whereas the network layer (X25
software) is incorporated in the operating system and accessed
through supervisor calls.

Partly automated translation of formal specifications into
programs is also possible [30], [52], [55]. Usually the speci-
fications are translated into some program elements (as de-
scribed above) which call upon a system dependent run-time
support package implementing interactions with the other
modules in the system, buffer management, time-outs, etc.

It is, not always desirable to implement each separately
specified module as a separate program or task. It is, there-
fore, interesting to investigate methods by which different
separately specified modules may be combined into a single
implementation module. A method for combining separately
specified protocol phases (which are related by a “hierarchical
dependence”) into a single implementation module is de-
scribed in [6] . A similar approach can also be used for com-
bining the protocol entities of different layers, provided that
the condition of hierarchical dependence between the proto-
cols is satisfied. This is, for instance, the case for the CCITT
Teletex transport, session, and document protocols.

V. ASSESSMENT OF PROTOCOL IMPLEMENTATIONS

We consider here all activities used for verifying whether a
particular protocol implementation adheres to the correspond-
ing protocol specification. If such checking is performed by an
official organization against a standard reference specification,
then the activity may be called “protocol implementation
certification.” The assessment activity consists of applying
tests to the iyplementation (or “unit under test,” UUT). The
tests are qualitative or quantitative depending on their objec-
tive, that is, either checking the logical conformity of the im-
plementation to its specification, or measuring certain per-

formance parameters such as throughput, delays, reliability,
etc.

Plans for instituting “certification centers” for OS1 .proto-
cols exist in several countries (see, for example, [49], or
several papers in [31], [32]). Different approaches may be
considered for the certification of an Open System for its con-
formance with OS1 protocol standards. The validation can be
made most complete when the system provides access to the
interfaces between the different protocol layers, such that,
effectively, each layer of the system to be validated may be
tested separately. It is also possible to make some overall tests
involving many layers at once, for example, from the transport
layer up through the presentation layer using the lower level
network access protocols and the application interface to the
presentation layer as “access points” to the module under test.
There may, however, be limitations as to the effectiveness of
such a combined multilayer testing procedure.

Among the various test architectures [131 , the remote
testing (Fig. 2) and a supplementary local tester (directly con-
nected to the UUT) are currently receiving the most attention.
Similarly, our efforts are directed towards gaining experience
in constructing a remote test system. Two versions of the sys-
tem are under development, an interactive tester and an auto-
matic tester. The following two subsections describe their
objectives and general organization, and the last subsection ex-
plains an effort towards developing meaningful test sequences.

A. The Interactive Tester
Here, the objective’is to provide a flexible tool destined

mainly for debugging protocol implementations and, to a
limited extent, for qualitative testing.

The interactive tester module is placed as a peer entity
with respect to the UUT. Using a computer terminal, the user
can construct arbitrary (also erroneous) interactions (PDU’s
and control service primitives) to be sent to the UUT, and
examine the response of the UUT for thai input. Hence, the
main function of the module is to create an easily useable
interface for the human operator, freeing him from performing
all coding and decoding functions for the various PDU’s, as
well as handling the necessary underlying connections.

A similar module can be connected to the service interface
of the UUT, interacting with the UUT by service primitives.
Alternatively, an automatic responder (see Section V-B) could
be used.

B. Automatic Remote Tester

1) The.Objecrive: The objective in this case is to develop an
experimental installation aimed at

a) studying the structure of the peer test module (PTM) and
the test module (TM) (see Fig. 2), so as to obtain a system
least dependent on the type of protocol tested, and

b) providing a vehicle for experimental evaluation of the
techniques used for deriving various test sequences.

Naturally, the ultimate goal is to use the results of the
experimentation towards the development of an assessment
system that is efficient, reliable, and easy to use.

2) The Approach: In order to achieve the flexibility re-
quired by the objectives, we have opted for an organization

BOCHMANN et al.: SPECIFICATIONS USING STATE TRANSITION MODEL 2511

pub1 i c
network

Peer entity: Peer Transport UUT: Transport
- Implementation

-
Under Test
Implementation

Fig. 2. Remote test architecture for the transport layer.

providing a set of support modules for applying various tests.
One of the modules takes care of sequencing the various tests,
based on a high-level sequencing scenario and the outcome
of previous tests.

For. each individual test, the behavior of the TM and PTM
is described using the FDT [26]. These descriptions are then
compiled (manually or automatically) into executable pro-
grams which are loaded by the support modules and use their
services.

The main support modules in the PTM (active tester) are

0 test sequencer,
0 report generator,
0 test loader/TM protocol handler,
0 initial connection establishment test module (needed for

0 PDU mapping module.

In the case of the TM (passive responder) the modules are

0 initial connection establishment test,
0 test loader/TM protocol handler, and
0 SDU mapping module.

The implementations at both the PTM and the TM will be
running on a PDP-11 computer under the RSX-1 1M operating
system. Communication between the various modules is
achieved through a shared memory region and the synchroni-
zation sei-vices of the operating system. The PDU and SDU
mapping modules, and the individual test sequences are cur-
rently adapted towards testing a transport protocol implemen-
tation [42].

C. Test Sequences

downloading of detailed tests to the TM), and

Although a wealth of information is available on software
and hardware testing techniques, very little is so far known
about testing protocol implementations, and unfortunately
the hardware and software methods are not necessarily ap-
plicable here. It is important to note that the protocol imple-
mentation details (software listing, plans, etc.) are not always
available. Consequently, the testing techniques must treat the
UUT as a “black box,” and the adherence of the UUT to the

specification must be deduced purely from its responses to
appropriate test sequences. In addition, it is useful to deter-
mine the behavior of the UUT under unspecified or erroneous
inputs in order to obtain a complete characterization (“friend-
liness”) of the implementation [131 .

The techniques for deriving test sequences for protocols
are, thus, an open research area. As starting points [13] could
be considered the existing approaches in the area of micro-
processor testing (e.g., [56]), machine identification [35],
[45], and certain software testing techniques [20]. It may be
necessary to test protocol implementations by functional
submodules [47] and/or to introduce a protocol-specific
fault model.

In our group, finite state machine testing techniques are
currently being explored. A number of interesting results are
reported in [S l] . They include the delivation of checking
sequences, transition tours, and characterization sequences
for protocoi machines. The major problems encountered are
related to the incompleteness of the specification, the syn-
chronization of the FTM and TM, the length of the test se-
quences, and the existence of parameters and secondary state
variables in the specification.

The last two items imply that the tests will not be com-
plete (except in some trivial cases) in the sense of completely
verifying the absence’ of design faults in the implementation
[471.

VI. CONCLUSIONS

The discussions in the preceding sections show how a
formal specification of communication services and protocols
can be used for the various activities during the design and
implementation of distributed systems. Although the discus-
sion focuses on the experience of our group with a particular
formal description technique [26], which is proposed to be
used in the OS1 environment, we feel that approaches
similar to those described here would be useful in many
other situations, including the design and implementation of
nonstandard communication protocols, distributed applica-
tion development, and modular system design in general.

REFERENCES

P. Azema, B. Berthomieu. and P. Decitre. “The design and
validation by Petri nets of a mechanism for the invocation of remote
servers.” i n Proc. IFIP Conf. . pp. 599-604.
G. Berthelot and G. Roucairol. “Reductions of Petri nets,“ i n
Proc. MFCS 1976 Symp. (Lecture Notes i n Computer Science, vol.
45). New York: Springer-Verlag. 1976.
G. Berthelot and R . Terrat. “Petri net theory for the correctness of
protocols,” this issue, pp. 2497-2505.
G . V. Bochmann and J . Gecsei. “ A unified model for the speci-
fication and verification of prctocols.” in Proc. I F I P Cong. , 1977,
pp. 229-234.
G. V . Bochmann and R . J . Chung. “ A formalized specification of
HDLC classes of procedures,” i n Proc. Nar. Telecommun. Conf . .
Los Angeles. CA, Dec. 1977, Paper 3A.2.
G. V. Bochmann and J . Tankoano. “Development and structure of
an X.25 implementation.” IEEE Trans. Software Eng . , vol. SE-5,
pp. 429439. Sept. 1979.
G. V . Bochmann. “Formalized specification of the MLP.”
“Specification of the services provided by the MLP,” and “An
analysis of the MLP.” Dep. d’lnformatique et de Recherche

25 12 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-30, NO. 12, DECEMBER 1982

Operationnelle, Univ. de Montreal. Montreal, P.Q., Canada. June
1979.
G . V. Bochmann and C. A. Sunshine, “Formal methods in com-
munication protocol design,” IEEE Trans. Commun., vol. COM-
28, pp. 624-631, Apr. 1980.
G. V. Bochmann, “A general transition model for protocols and
communication services,” IEEE Trans. Commun., COM-28, pp.
643-650. Apr. 1980.

INWG Note; contrib. to IS0 TC97/SCl6/WGl ad hoc group on
-, “Concept for the specification of protocols and services.’’

FDT meet., Amsterdam. The Netherlands. 1980.
-, “The use of formal description techniques for OS1 proto-
cols,” in Proc. Nut. Telecommun. Conf,.. New Orleans, LA, Dec.
1981, pp. F8.6.1LF8.6.6.
G. V. Bochmann and M. Raynal. “Structured specification of
communicating systems,’’ IEEE Trans. Comput., vol. C-32, Feb.
1983.
G . V. Bochmann and E. Cerny, “Protocol assessment,” Dendronic
Decision Ltd., Montreal, P.Q., Canada. 1982. under contr. for
Drp. Commun. Canada.
G . V. Bochmann, Concepts for Distributed Svsterns
Design. Springer-Verlag. to be published, chs. 8-10,
G . V. Bochmann, L. Henckel, and R. P. Zeletin, ”Formalized
specification and analysis of a virtual file system,” Hahn-Meitner-
Institut. Berlin, West Germany, Tech. Rep. HMI-8307. Feb. 1982.
T. L. Booth, “Performance optimization of software systems
processing information sequences modeled by probabilistic lan-
guages,” IEEE Trans. Software Eng.. vol. SE-5. pp. 31-44. Jan.
1979.
R. J . A. Buhr and D. A. MacKinnon, “The transport layer in
OSI,” Res. Rep. DOC-CR-CS-I980-0008, prepared for Dep. Com-
mun. Canada, 1981.
“Information processing systems-Open systems interconnec-
tion-Transport service definitions,” ISO/DP 8072, 1982.
“Information processing systems-Open systems interconnec-
tion-Transport protocol specification,” ISO/DP 8073.
T. S. Chow, “Testing software design modeled by finite state
machines,” IEEE Trans. Software Eng., vol. SE-4. May 1978.
R. Chung and G. V. Bochmann. “Principles and application of a
formal description technique to Teletex protocols,” Tech. Rep., in
preparation.
R. J. Chung and G. V. Bochmann, “A formal specification of the
Teletrx session and document procedures,” Dep. d’lnformatique et

Canada, Docu. de Travail. 1982.
de Recherche Operationelle, Univ. de Montreal, Montreal, P . Q . ,

E. M. Clark and E. A. Emerson. “Design and synthesis of syn-
chronisation skeletons using branching time temporal logic.”
Aiken Computation Lab.. Harvard Univ., Cambridge, MA, Tech.
Rep. TR-11-81.
M. Devy and M. Diaz. “Multilevel specification and validation of
the control in communication systems.’‘ i n Proc.,lst Int. Conf. Dis-
tributed Comput. Syst., AL, Oct. 1 - 4 , 1979.
M. Didic and B. Wolfinger. “Simulation of a local computer
network architecture applying a unified modeling system,” Com-
put. Networks, vol. 6. pp. 75-91. May 1982.
“A FDT based on an extended state transition model,” Working
Doc. of Subgroup B of ad hoc group on FDT of I S 0 TC97/SC16/
WGI. Dec. 1981.
“Tutorial on formal description techniques,” Canadian contrib. to
I S 0 TC97/SC16/WG1 ad hoc group on FDT. Jan. 1981; also annex
to [30].

terns.” Working Doc. of Subgroup C of ad hoc group on FDT of I S 0
“Interaction primitives in formal specification of distributed sys-

TC97/SC 16/WG 1 , Sept. 198 1 ; also “Temporal ordering specifica-
t ion . . . ” in [32].
“Proposal on different forms of FDT.” Canadian contrib. to
CCITT SGVIl Rapporteurs meet. on FDT, Mar. 1982.
M. Gagni., “Un compilateur pour la traduction de specifications de
protocoles en Pascal,” Dep. d’I.R.0.. Univ. de Montreal,
Montreal, P.Q.. Canada, Docu. de travail 120, Feb. 1982.
Proc. 1st Int . Workshop Protocol Specification, Testing. Verifica-
tion (IFIP WG 6.1). North-Holland, 1982.
Proc. of 2nd Int. Workshop Protocol Specification, Testing,
Verification (IFIP WG 6 . I) . North-Holland, 1982.
“Concepts for describing the OS1 architecture,” Working Doc. of

Subgroup A of ad hoc group on FDT of I S 0 TC97/SC16/WG1 Nov.
198 1; also “Temporal ordering specification.. .” in [32].
C. Jard and G . V. Bochmann, “An approach to testing specifica-
tions,” Dep. d’lnformatique et de Recherche operationnelle. Univ.
de Montreal, Montreal, P.Q., Canada. Publ. 430. 1981.
Z. Kohavi, Switching and Finite Automata Theory, 2nd ed. New
York: McGraw-Hill, 1978.
C. Lacaille, Master‘s thesis, Univ. de Montreal, Montreal, P.Q.,
Canada. in preparation.
S. S. Lam and A . U. Shankar, “Protocol projections: A method of
analyzing communication protocols,” in Proc. Nut. Telecommun.
Conf . , New Orleans, LA, Dec. 19811 pp. E3.21-E.3.2.8.
G. LeLann and H. LeGoff, “Verification and evaluation of com-
munication protocols,” Comput. Networks, vol. 2, pp. 50-69, Feb.
1978.
M. LeFevre and 0. Rafic, “Pascal description of P machine,”
Projet RHIN, Agence d’lnformatique, France, Doc. FDT 750g,
Sept. 1981.
A. L6veille. Master’s thesis, Univ. de Montreal, Montreal, P.Q.,
Canada, in preparation.
L. Logrippo, “Specification of transport service using finite-state
transducers and abstract data types,” contrib. to IS0 TC97/SC16/
WG1 ad hoc group on FDT, Apr. 1982.
M. Maksud, Master’s thesis, Univ. de Montreal, Montreal, P.Q.,
Canada, in preparation.
P. Merlin and G. V. Bochmann, “On the construction of sub-
module specifications and communication protocols,” Ass. Com-
put Much. ‘TOPLAS, to be published.
M. K. Molloy. “On the integration of delay and throughput meas-
ures in distributed processing models.” Ph.D. dissertation. Dep.
Comput. Sci.. Univ. California, Los Angela, 1981.
S. Naito and M. Tsunoyama, “Fault detection for sequential
machines by transition tours,” in Proc. IEEE Conf. Fault Tol-
erance, 198 l .
G . V. Bochmann. E . Cerny, and C. Lacaille, “Formal description
of a network service,” Dep. d’lnformatique et de Recherche
Operationnelle, Univ. de Montreal, Montreal, P.Q., Canada,
Docu. de Travail, 1982.
T . F. Piatkowski, “Remarks on the feasibility of validating and
testing ADCCP implementations.” in Proc. Trends and Appli-
cations (NBS), Gaithersburg, MD, 1980.
J. B. Postel and D. Fowler, “Graph modeling of computer com-
munications protocols,” in Proc. 5th Texas Conf. Comput. Syst . ,
Austin, TX, Oct. 1976.
D. Rayner, ”A system for testing protocol implementations,”
Cornput. Networks, to be published.
L. Robinson, K. N. Levitt, and B . A. Silverberg, The HDM
Handbook. vols. 1-111, SRI Int., 1979.
B. Sarikaya and G. V . Bochmann. “Some experience with test
sequence generation for protocols.” in [32].
G. Schultz. D. B. Rose, C. H. West and J. P. Gray, “Executable
description and validation of SNA,” IEEE Trans. Commun., Vol.
COM-28, pp. 661477, Apr. 1980.
G. Simon and D. Kaufman, “An extended finite state machine
approach to protocol specification,” in [32].
C. Sunshine, “Formal modeling of communication protocols,” in
Computer Networks and Simulation, S. Schoemaker, Ed. North-
Holland, 1982.
R. L. Tenney and T. P. Blumer, “An automated formal specifi-

201-217, July 1982.
cation technique for protocols,” Comput. Networks, vol. 6, pp.

S . M. Thatte and J . A. Abraham, “Test generation for general
microprocessor architectures,” in Proc. 9th In t . Symp. Fault Tol-
erant Comput., June 1979, pp. 203-210.
”Formal specification of a transport protocol,” Canadian contrib.
to IS0 TC97/SC16/WG 1 ad hoc group on FDT, 1981.
Annex 1 and Annex 2 of “Examples of transport protocol specifi-
cations,” Canadian contrib. to CCITT SGVII Rapporteurs meet. on
FDT, Mar. 1982.
“Formal specification of a transport service,” contrib. to CCI’M
SGVIl Rapporteurs meet. on FDT. FDT-21. Oct. 1981.

I S 0 TC97/SCl6/WGl ad hoc group on FDT, Sept. 1981.
“Formal specification of a transport service,” contrib. WASH-9 to

F. Vogt, Ph.D. dissertation, HMI, Berlin, West Germany, Mar.
1982. also in [32].

BOCHMANN et al.: SPECIFICATIONS USING STATE TRANSITION MODEL 2513

* Clirnent Lacaille received the B.Sc. degree in
1979 and the M.Sc. degree in 1982, both in com-
puter science, from the Universiti de Montreal,
Montreal. P.Q., Canada.

His research interests are high level protocols
and automatic systems assessment.

*
Michel Maksud ("80) received the B.Sc.

de Montreal. Montreal, P.Q., Canada. i n 1979.
degree in computer science from the Universiti.

He is currently working on the development of
interactive and automatic testers for high-level
protocols. His interests include fault-tolerant
computing and protocol specifications.

Mr. Maksud is a member of the Association for
Computing Machinery.

* *

*

K. S. Raghunathan received the B.E. (Hons.) degree in electronics and
Mi,.he] cagn6 received the B.Sc. degree i n ma themat i c s from the Un,. communication engineering from Madras University, Madras, India. i n
versite du Quebec a Rimouski, Canada. in January 1978. 1973. and the M. Tech. degree from the Indian Institute of Science,

Ottawa. Ont., Canada. He has since been working at Indian Telephone Industries, India. in the
development of electronic switching systems. He is currently a Ph.D.
student at the Departement de'lnformatique, Universite de Montreal,
Montreal. P .Q. . Canada. His research interests include performanre
modeling and evaluation of distributed systems.

He is presently working at the National Research Council of Canada in Bombay. India , i n '975.

*

